## C4 DIFFERENTIATION

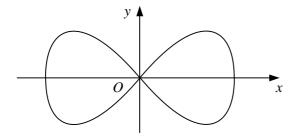
## Worksheet E

1 A curve has the equation

$$3x^2 + xy - y^2 + 9 = 0.$$

Find an expression for  $\frac{dy}{dx}$  in terms of x and y. (5)

2 A curve has parametric equations


$$x = a \cos \theta$$
,  $y = a(\sin \theta - \theta)$ ,  $0 \le \theta < \pi$ ,

where a is a positive constant.

**a** Show that 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan \frac{\theta}{2}$$
. (5)

b Find, in terms of a, an equation for the tangent to the curve at the point where it crosses the y-axis.(3)

3



The diagram shows the curve with parametric equations

$$x = \cos \theta$$
,  $y = \frac{1}{2}\sin 2\theta$ ,  $0 \le \theta < 2\pi$ .

**a** Find 
$$\frac{dy}{dx}$$
 in terms of  $\theta$ . (3)

- **b** Find the two values of  $\theta$  for which the curve passes through the origin. (2)
- c Show that the two tangents to the curve at the origin are perpendicular to each other. (2)
- **d** Find a cartesian equation for the curve. (4)
- 4 A curve has the equation

$$x^2 - 4xy + y^2 = 24.$$

**a** Show that 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x-2y}{2x-y}$$
. (4)

**b** Find an equation for the tangent to the curve at the point P(2, 10). (3)

The tangent to the curve at Q is parallel to the tangent at P.

c Find the coordinates of 
$$Q$$
. (4)

5 A curve is given by the parametric equations

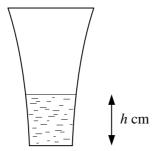
$$x = t^2 + 2$$
,  $y = t(t - 1)$ .

- **a** Find the coordinates of any points on the curve where the tangent to the curve is parallel to the *x*-axis.
- **b** Show that the tangent to the curve at the point (3, 2) has the equation

$$3x - 2y = 5.$$
 (5)

**(5)** 

6 Find an equation for the normal to the curve with equation


$$x^3 - 3x + xy - 2y^2 + 3 = 0$$

at the point (1, 1).

Give your answer in the form y = mx + c.

**(7**)

7



The diagram shows the cross-section of a vase. The volume of water in the vase,  $V \, \text{cm}^3$ , when the depth of water in the vase is  $h \, \text{cm}$  is given by

$$V = 40\pi(e^{0.1h} - 1).$$

The vase is initially empty and water is poured into it at a constant rate of 80 cm<sup>3</sup> s<sup>-1</sup>.

Find the rate at which the depth of water in the vase is increasing

$$\mathbf{a} \quad \text{when } h = 4, \tag{5}$$

**8** A curve is given by the parametric equations

$$x = \frac{t}{1+t}$$
,  $y = \frac{t}{1-t}$ ,  $t \neq \pm 1$ .

**a** Show that 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{1+t}{1-t}\right)^2$$
. (4)

**b** Show that the normal to the curve at the point P, where  $t = \frac{1}{2}$ , has the equation

$$3x + 27y = 28. (4)$$

The normal to the curve at P meets the curve again at the point Q.

c Find the exact value of the parameter 
$$t$$
 at  $Q$ . (4)

9 A curve has the equation

$$2x + x^2y - y^2 = 0.$$

Find the coordinates of the point on the curve where the tangent is parallel to the x-axis. (8)

10 A curve has parametric equations

$$x = a \sec \theta$$
,  $y = 2a \tan \theta$ ,  $-\frac{\pi}{2} \le \theta < \frac{\pi}{2}$ ,

where a is a positive constant.

**a** Find 
$$\frac{dy}{dx}$$
 in terms of  $\theta$ . (3)

**b** Show that the normal to the curve at the point where  $\theta = \frac{\pi}{4}$  has the equation

$$x + 2\sqrt{2} y = 5\sqrt{2} a. {4}$$

**c** Find a cartesian equation for the curve in the form  $y^2 = f(x)$ . (3)